Pattern Graph Rewrite Systems

نویسندگان

  • Aleks Kissinger
  • Alex Merry
  • Matvey Soloviev
چکیده

String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes (“bang boxes”), on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logic Based Programmed Structure Rewriting Systems 1

This paper presents a new logic based framework for the formal treatment of graph rewriting systems as special cases of programmed rewriting systems for arbitrary relational structures. Considering its expressive power, the new formalism surpasses almost all variants of nonparallel algebraic as well as algorithmic graph grammar approaches by offering set-oriented pattern matching facilities as ...

متن کامل

Monoidal Categories, Graphical Reasoning, and Quantum Computation

Graphs provide a natural mechanism for visualising many algebraic systems. They are particularly useful for describing algebras in a monoidal category, such as frobenius algebras and bialgebras, which play a vital role in quantum computation. In this context, terms in the algebra are represented as graphs, and algebraic identities as graph rewrite rules. To describe the theory of a more powerfu...

متن کامل

Higher-order Rewrite Systems and Their Connuence

We study Higher-Order Rewrite Systems (HRSs) which extend term rewriting to-terms. HRSs can describe computations over terms with bound variables. We show that rewriting with HRSs is closely related to undirected equational reasoning. We deene Pattern Rewrite Systems (PRSs) as a special case of HRSs and extend three connuence results from term rewriting to PRSs: the critical pair lemma by Knuth...

متن کامل

Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

The general form of safe recursion (or ramified recurrence) can be expressed by an infinite graph rewrite system including unfolding graph rewrite rules introduced by Dal Lago, Martini and Zorzi, in which the size of every normal form by innermost rewriting is polynomially bounded. Every unfolding graph rewrite rule is precedence terminating in the sense of Middeldorp, Ohsaki and Zantema. Altho...

متن کامل

Modularity of Termination for Disjoint Term Graph Rewrite Systems: A Simple Proof

Graph Rewrite Systems: A Simple Proof Enno Ohlebusch University of Bielefeld, Technische Fakult at P.O. Box 10 01 31, 33501 Bielefeld, Germany email: [email protected]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012